كلية الهندسة - جامعة عين شمس, الرئيسية
Complex Variables, Special Functions and Partial Differential Equations
What Will Learn?
-
Course AimsThe aim of this course is to provide students with core material in complex variables, special functions, series solutions of differential equations and using it to solve Bessel and Legendre’s differential equations. The course also provides a solid foundation in numerical solutions for ordinary and partial differential equations.
-
Course Goals
- Quality Education
Requirements
PHM213s
Description
-
English Description
Functions of complex variables and their derivatives, Complex integrals, Cauchy integral theorems, Conformal mapping. Special functions, Gamma and Beta function, Series solution of linear differential equations, Bessel functions and Legendre polynomials, Bessel, and Legendre series. Partial differential equations -
Arabic Description
Functions of complex variables and their derivatives, Complex integrals, Cauchy integral theorems, Conformal mapping. Special functions, Gamma and Beta function, Series solution of linear differential equations, Bessel functions and Legendre polynomials, Bessel, and Legendre series. Partial differential equations
-
قسمالفيزيقا والرياضيات الهندسية
-
الساعات المعتمدة3
-
الدرجاتالإجمالي ( 100 ) = نصف العام (25) + tr.Student Activities (25 = tr.Industry 0% , tr.Project 0% , tr.Self_learning 5% , tr.Seminar 25% ) + درجة الامتحان (50)
-
الساعاتساعات المحاضرة: 3, ساعات التعليم: 1, ساعات المعمل: 0
-
Required SWL125
-
Equivalent ECTS5
- - “Advanced Engineering Mathematics", Erwin Kreyszig 10th edition. (2011), Wiley Int. Edition. (ISBN 978-0-470-45836-5)
- - Student solution manual, Advanced Engineering Mathematics, Volume 1 (ISBN 978-1-11-800740-2/pbk). 260 p. (2011).
- - Student solution manual, Advanced Engineering Mathematics, Volume 2 (ISBN 978-1-118-26670-0/pbk). 200 p. (2014). - Advanced Engineering Mathematics, Erwin Kreyszig 10th edition. (2011), Wiley Int. Edition. (ISBN 978-0-470-45836-5) - Advanced Engineering Mathematics, Erwin Kreyszig 10th edition. (2011), Wiley Int. Edition. (ISBN 978-0-470-45836-5).